Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Dig Liver Dis ; 56(1): 55-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37407314

RESUMO

Ulcerative colitis (UC)-related mucosal inflammation is characterized by the production of various autoantibodies with limited clinical relevance. Recent studies have shown that circulating levels of IgG against integrin αvß6 are increased in UC patients as compared to Crohn's disease (CD) patients and healthy controls (HC). The present study assessed the diagnostic value of circulating IgG anti-αvß6 in UC. Sera were prospectively collected from 108 outpatients with UC, 103 patients with CD, and 62 HC, and the levels of IgG anti-αvß6 were measured using a commercially available ELISA kit. The cut-off for positive results was defined as the 95th percentile of the values of the autoantibodies in HC serum samples. Levels of IgG anti-αvß6 were significantly higher in UC than in CD patients, including those with colonic localization, and HC. Fifty-six of the 108 (51.8%) UC patients had a positive test whereas only 17/103 (16.5%) patients with CD, and among these, 4/16 (25%) patients with colonic CD, were positive. In UC, there was no statistical difference between patients with IgG anti-αvß6 positivity and those negative in terms of clinical disease activity, fecal calprotectin values, and disease extent. The sensitivity, specificity, predictive positive value, and predictive negative value of the test to differentiate between UC and CD were 51.9% (C.I.42.4-61.3), 83.5% (C.I. 76.3-90.7), 76.7% (C.I. 67.0-86.4), and 62.3% (C.I. 54.2-70.4) respectively. Our study confirms that anti-αvß6 antibodies are demonstrable in the serum of the majority of UC patients and suggests the necessity of further research to understand if the anti-αvß6 antibody determination could have a place in the clinical decision-making of IBD.


Assuntos
Colite Ulcerativa , Doença de Crohn , Humanos , Autoanticorpos , Imunoglobulina G , Biomarcadores
2.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068921

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) represents a promising anticancer agent, as it selectively induces apoptosis in transformed cells without altering the cellular machinery of healthy cells. Unfortunately, the presence of TRAIL resistance mechanisms in a variety of cancer types represents a major hurdle, thus limiting the use of TRAIL as a single agent. Accumulating studies have shown that TRAIL-mediated apoptosis can be facilitated in resistant tumors by combined treatment with antitumor agents, ranging from synthetic molecules to natural products. Among the latter, flavonoids, the most prevalent polyphenols in plants, have shown remarkable competence in improving TRAIL-driven apoptosis in resistant cell lines as well as tumor-bearing mice with minimal side effects. Here, we summarize the molecular mechanisms, such as the upregulation of death receptor (DR)4 and DR5 and downregulation of key anti-apoptotic proteins [e.g., cellular FLICE-inhibitory protein (c-FLIP), X-linked inhibitor of apoptosis protein (XIAP), survivin], underlying the TRAIL-sensitizing properties of different classes of flavonoids (e.g., flavones, flavonols, isoflavones, chalcones, prenylflavonoids). Finally, we discuss limitations, mainly related to bioavailability issues, and future perspectives regarding the clinical use of flavonoids as adjuvant agents in TRAIL-based therapies.


Assuntos
Antineoplásicos , Flavonoides , Neoplasias , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Ligantes , Neoplasias/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
3.
Eur J Immunol ; 53(11): e2350460, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37611637

RESUMO

Transforming growth factor (TGF)-ß1, a member of the TGF-ß superfamily, is produced by many immune and nonimmune cells and has pleiotropic effects on both innate and adaptive immunity, especially in the control of T-cell differentiation and function. Consistently, loss of TGF-ß1 function is associated with exacerbated T-cell-dependent inflammatory responses that culminate in pathological processes in allergic and immune-mediated diseases. In this review, we highlight the roles of TGF-ß1 in immunity, focusing mainly on its ability to promote differentiation of regulatory T cells, T helper (Th)-17, and Th9 cells, thus contributing to amplifying or restricting T-cell responses in health and human diseases (e.g., inflammatory bowel diseases, type 1 diabetes, asthma, and MS). In addition, we discuss the involvement of Smad7, an inhibitor of TGF-ß1 signaling, in immune-mediated disorders (e.g., psoriasis, rheumatoid arthritis, MS, and inflammatory bowel diseases), as well as the discordant results of clinical trials with mongersen, an oral pharmaceutical compound containing a Smad7 antisense oligonucleotide, in patients with Crohn's disease. Further work is needed to ascertain the reasons for such a discrepancy as well as to identify better candidates for treatment with Smad7 inhibitors.


Assuntos
Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Proteína Smad7/genética , Proteína Smad7/metabolismo , Proteína Smad7/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
4.
Biomedicines ; 11(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37509654

RESUMO

The intestinal epithelial barrier plays a key role in the absorption of nutrients and water, in the regulation of the interactions between luminal contents and the underlying immune cells, and in the defense against enteric pathogens. Additionally, the intestinal mucus layer provides further protection due to mucin secretion and maturation by goblet cells, thus representing a crucial player in maintaining intestinal homeostasis. However, environmental factors, such as dietary products, can disrupt this equilibrium, leading to the development of inflammatory intestinal disorders. In particular, ultra-processed food, which is broadly present in the Western diet and includes dietary components containing food additives and/or undergoing multiple industrial processes (such as dry heating cooking), was shown to negatively impact intestinal health. In this review, we summarize and discuss current knowledge on the impact of a Western diet and, in particular, ultra-processed food on the mucus barrier and goblet cell function, as well as potential therapeutic approaches to maintain and restore the mucus layer under pathological conditions.

6.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240286

RESUMO

Cancer remains one of the most common causes of death worldwide, mainly due to late diagnosis and the lack of efficient therapeutic options for patients with advanced diseases [...].


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Imunoterapia , Itália
7.
Front Immunol ; 14: 1175348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223095

RESUMO

Background and aim: Type I interferons (IFNs) are highly expressed in the gut mucosa of celiac disease (CD) gut mucosa and stimulates immune response prompted by gluten ingestion, but the processes that maintain the production of these inflammatory molecules are not well understood. Adenosine deaminase acting on RNA 1 (ADAR1), an RNA-editing enzyme, plays a crucial role in inhibiting self or viral RNAs from activating auto-immune mediated responses, most notably within the type-I IFN production pathway. The aim of this study was to assess whether ADAR1 could contribute to the induction and/or progression of gut inflammation in patients with celiac disease. Material and methods: ADAR1 expression was assessed by Real time PCR and Western blotting in duodenal biopsy taken from inactive and active celiac disease (CD) patients and normal controls (CTR). To analyze the role of ADAR1 in inflamed CD mucosa, lamina propria mononuclear cells (LPMC) were isolated from inactive CD and ADAR1 was silenced in with a specific antisense oligonucleotide (AS) and then incubated with a synthetic analogue of viral dsRNA (poly I:C). IFN-inducing pathways (IRF3, IRF7) in these cells were evaluated with Western blotting and inflammatory cytokines were evaluated with flow cytometry. Lastly, the role of ADAR1 was investigated in a mouse model of poly I:C-driven small intestine atrophy. Results: Reduced ADAR1 expression was seen in duodenal biopsies compared to inactive CD and normal controls. Ex vivo organ cultures of duodenal mucosal biopsies, taken from inactive CD patients, stimulated with a peptic-tryptic digest of gliadin displayed a decreased expression of ADAR1. ADAR1 silencing in LPMC stimulated with a synthetic analogue of viral dsRNA strongly boosted the activation of IRF3 and IRF7 and the production of type-I IFN, TNF-α and IFN-γ. Administration of ADAR1 antisense but not sense oligonucleotide to mice with poly I:C-induced intestinal atrophy, significantly increased gut damage and inflammatory cytokines production. Conclusions: These data show that ADAR1 is an important regulator of intestinal immune homeostasis and demonstrate that defective ADAR1 expression could provide to amplifying pathogenic responses in CD intestinal mucosa.


Assuntos
Doença Celíaca , Animais , Camundongos , Doença Celíaca/genética , Adenosina Desaminase/genética , Mucosa Intestinal , RNA de Cadeia Dupla , Atrofia , Citocinas , Poli I
8.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047419

RESUMO

Despite recent advances in treatment approaches, cancer is still one of the leading causes of death worldwide. Restoration of tumor immune surveillance represents a valid strategy to overcome the acquired resistance and cytotoxicity of conventional therapies in oncology and immunotherapeutic drugs, such as immune checkpoint inhibitors and immunogenic cell death inducers, and has substantially progressed the treatment of several malignancies and improved the clinical management of advanced disease. Unfortunately, because of tumor-intrinsic and/or -extrinsic mechanisms for escaping immune surveillance, only a fraction of patients clinically respond to and benefit from cancer immunotherapy. Accumulating evidence derived from studies of drug repositioning, that is, the strategy to identify new uses for approved or investigational drugs that are outside the scope of the original medical indication, has suggested that some anthelmintic drugs, in addition to their antineoplastic effects, exert important immunomodulatory actions on specific subsets of immune cell and related pathways. In this review, we report and discuss current knowledge on the impact of anthelmintic drugs on host immunity and their potential implication in cancer immunotherapy.


Assuntos
Anti-Helmínticos , Antineoplásicos , Neoplasias , Humanos , Receptor de Morte Celular Programada 1 , Neoplasias/tratamento farmacológico , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Imunoterapia , Antígeno B7-H1
9.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769214

RESUMO

Gastric cancer is the sixth most commonly diagnosed cancer and the fourth leading cause of cancer death worldwide. Helicobacter pylori (H. pylori) is one of the main risk factors for this type of neoplasia. Carcinogenetic mechanisms associated with H. pylori are based, on the one hand, on the onset of chronic inflammation and, on the other hand, on bacterial-specific virulence factors that can damage the DNA of gastric epithelial cells and promote genomic instability. Here, we review and discuss the major pathogenetic mechanisms by which H. pylori infection contributes to the onset and development of gastric cancer.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/patologia , Infecções por Helicobacter/genética , Mucosa Gástrica/patologia
10.
Curr Res Immunol ; 4: 100055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36714553

RESUMO

In physiological conditions, the human gut contains more immune cells than the rest of the body, but no overt tissue damage occurs, because several regulatory mechanisms control the activity of such cells thus preventing excessive and detrimental responses. One such mechanism relies on the action of transforming growth factor (TGF)-ß1, a cytokine that targets both epithelial cells and many immune cell types. Loss of TGF-ß1 function leads to intestinal pathology in both mice and humans. For instance, disruption of TGF-ß1 signaling characterizes the destructive immune-inflammatory response in patients with Crohn's disease and patients with ulcerative colitis, the major human inflammatory bowel disease (IBD) entities. In these pathologies, the defective TGF-ß1-mediated anti-inflammatory response is associated with elevated intestinal levels of Smad7, an antagonist of TGF-ß1 signaling. Consistently, knockdown of Smad7 restores TGF-ß1 function thereby attenuating intestinal inflammation in patients with IBD as well as in mice with IBD-like colitis. Up-regulation of Smad7 and reduced TGF-ß1 signaling occurs also in necrotizing enterocolitis, environmental enteropathy, refractory celiac disease, and cytomegalovirus-induced colitis. In this article, we review the available data supporting the pathogenic role of Smad7 in the gastrointestinal tract and discuss whether and how targeting Smad7 can help attenuate detrimental immuno-inflammatory responses in the gut.

11.
Inflamm Bowel Dis ; 29(10): 1555-1562, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36458964

RESUMO

BACKGROUND: Recent retrospective studies have shown that frailty is common in hospitalized patients with inflammatory bowel disease (IBD) and enhances the risk of drug-related infections, postsurgery complications, hospital readmissions, and mortality, independently of age and comorbidities. We carried out a descriptive cohort study to evaluate the frequency of frail phenotype in IBD and analyzed the risk factors associated with this condition. METHODS: Frail phenotype was assessed in IBD patients by using the Fried frailty phenotype. Univariate and multivariate analyses were conducted to assess the risk factors for frail phenotype. Serum levels of interleukin (IL)-6 were quantified in patients with a frail or a fit phenotype by ELISA. RESULTS: Three hundred eighty-six IBD outpatients (198 Crohn's disease and 188 ulcerative colitis) were prospectively enrolled from December 2021 to April 2022. Frail phenotype was diagnosed in 64 of 386 (17%) IBD patients and was significantly associated with female gender, active disease, and current use of steroids. Multivariate analysis showed that active disease was a risk factor for frail phenotype (odds ratio, 11.5; 95% confidence interval, 3.9-33.9). No difference in IL-6 serum levels was seen between patients with a frail phenotype and those who were fit. CONCLUSIONS: This is the first prospective study showing that frail phenotype occurs in nearly one-fifth of IBD patients. Data indicate that active IBD is an independent risk factor for frail phenotype in IBD.


In IBD, frailty has been associated with enhanced risk of adverse outcomes. In this prospective study, nearly one-fifth of IBD patients were frail, and active disease was an independent risk factor for the frail phenotype.


Assuntos
Colite Ulcerativa , Fragilidade , Doenças Inflamatórias Intestinais , Humanos , Feminino , Idoso , Estudos de Coortes , Estudos Prospectivos , Idoso Fragilizado , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/diagnóstico , Colite Ulcerativa/complicações , Fenótipo
12.
Cancers (Basel) ; 14(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36358713

RESUMO

Advanced, metastatic colorectal cancer (CRC) is associated with high rate of mortality because of its poor responsiveness to chemotherapy/immunotherapy. Recent studies have shown that hepcidin, a peptide hormone produced mainly by hepatocytes, is expressed by and enhances the growth of tumor cells. We here assessed whether hepcidin expression helps identify subsets of CRC with advanced and aggressive course. By integrating results of in vitro/ex vivo studies with data of bioinformatics databases, we initially showed that hepcidin RNA and protein expression was more pronounced in tissue samples taken from the tumor area, as compared to the macroscopically unaffected, adjacent, colonic mucosa of CRC patients. The induction of hepcidin in the colonic epithelial cell line HCEC-1ct by interleukin (IL)-6, IL-21 and IL-23 occurred via a Stat3-dependent mechanism and, in primary CRC cells, hepcidin co-localized with active Stat3. In CRC tissue, hepcidin content correlated mainly with macrophage accumulation and IL-10 and CD206 expression, two markers of regulatory macrophages. Consistently, both IL-10 and CD206 were up-regulated by hepcidin in blood mononuclear cells. The highest levels of hepcidin were found in metastatic CRC and survival analysis showed that high expression of hepcidin associated with poor prognosis. Moreover, hepcidin expression correlated with markers of epithelial-to-mesenchymal transition and the silencing of hepcidin in CRC cells reduced epithelial-to-mesenchymal transition markers. These findings indicate that hepcidin is markedly induced in the advanced stages of CRC and suggest that it could serve as a prognostic biomarker in CRC.

13.
Cancers (Basel) ; 14(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36291778

RESUMO

Colorectal cancer (CRC) cells contain elevated levels of active signal transducer and the activator of transcription (Stat)-3, which exerts proliferative and anti-apoptotic effects. Various molecules produced in the CRC tissue can activate Stat3, but the mechanisms that amplify such an activation are yet to be determined. In this paper, we assessed whether Smad7, an inhibitor of Transforiming Growth Factor (TGF)-ß1 activity, sustains Stat3 expression/activation in CRC cells. Both Smad7 and phosphorylated (p)/activated-Stat3 were more expressed in the tumoral areas of CRC patients, compared to the normal adjacent colonic mucosa of the same patients, and were co-localized in primary CRC cells and CRC cell lines. The knockdown of Smad7 with a Smad7 antisense oligonucleotide (AS) reduced p-Stat3 in both unstimulated and interleukin (IL)-6- and IL-22-stimulated DLD-1 and HCT116 cells. Consistently, reduced levels of BCL-xL and survivin, two downstream signaling targets of Stat3 activation, were seen in Smad7 AS-treated cells. An analysis of the mechanisms underlying Smad7 AS-induced Stat3 inactivation revealed that Smad7 AS reduced Stat3 RNA and protein expression. A chromatin immunoprecipitation assay showed the direct regulatory effect of Smad7 on the Stat3 promoter. RNA-sequencing data from the Tumor, Normal and Metastatic (TNM) plot database showed a positive correlation between Smad7 and Stat3 in 1450 CRC samples. To our knowledge, this is the first evidence supporting the theory that Smad7 positively regulates Stat3 function in CRC.

14.
Biomed Pharmacother ; 155: 113794, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271571

RESUMO

Colorectal cancer (CRC) remains a leading causes of cancer-related death in the world, mainly due to the lack of effective treatment of advanced disease. TNF-related apoptosis-inducing ligand (TRAIL)-driven cell death, a crucial event in the control of tumor growth, selectively targets malignant rather than non-transformed cells. However, the fact that cancer cells, including CRC cells, are either intrinsically resistant or acquire resistance to TRAIL, represents a major hurdle to the use of TRAIL-based strategies in the clinic. Agents able to overcome CRC cell resistance to TRAIL have thus great therapeutic potential and many researchers are making efforts to identify TRAIL sensitizers. The anthelmintic drug rafoxanide has recently emerged as a potent anti-tumor molecule for different cancer types and we recently reported that rafoxanide restrained the proliferation of CRC cells, but not of normal colonic epithelial cells, both in vitro and in a preclinical model mimicking sporadic CRC. As these findings were linked with the induction of endoplasmic reticulum stress, a phenomenon involved in the regulation of various components of the TRAIL-driven apoptotic pathway, we sought to determine whether rafoxanide could restore the sensitivity of CRC cells to TRAIL. Our data show that rafoxanide acts as a selective TRAIL sensitizer in vitro and in a syngeneic experimental model of CRC, by decreasing the levels of c-FLIP and survivin, two key molecules conferring TRAIL resistance. Collectively, our data suggest that rafoxanide could potentially be deployed as an anti-cancer drug in the combinatorial approaches aimed at overcoming CRC cell resistance to TRAIL-based therapies.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Survivina , Rafoxanida/farmacologia , Apoptose , Linhagem Celular Tumoral , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Antineoplásicos/farmacologia , Neoplasias Colorretais/patologia
15.
Biomedicines ; 10(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35203499

RESUMO

The intestinal mucosal barrier, also referred to as intestinal barrier, is widely recognized as a critical player in gut homeostasis maintenance as it ensures the complex crosstalk between gut microbes (both commensals and pathogens) and the host immune system. Highly specialized epithelial cells constantly cope with several protective and harmful agents to maintain the multiple physiological functions of the barrier as well as its integrity. However, both genetic defects and environmental factors can break such equilibrium, thus promoting gut dysbiosis, dysregulated immune-inflammatory responses, and even the development of chronic pathological conditions. Here, we review and discuss the molecular and cellular pathways underlying intestinal barrier structural and functional homeostasis, focusing on potential alterations that may undermine this fine balance.

16.
Nutrients ; 14(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35057440

RESUMO

Intestinal dysbiosis has been widely documented in inflammatory bowel diseases (IBDs) and is thought to influence the onset and perpetuation of gut inflammation. However, it remains unclear whether such bacterial changes rely in part on the modification of an IBD-associated lifestyle (e.g., smoking and physical activity) and diet (e.g., rich in dairy products, cereals, meat and vegetables). In this study, we investigated the impact of these habits, which we defined as confounders and covariates, on the modulation of intestinal taxa abundance and diversity in IBD patients. 16S rRNA gene sequence analysis was performed using genomic DNA extracted from the faecal samples of 52 patients with Crohn's disease (CD) and 58 with ulcerative colitis (UC), which are the two main types of IBD, as well as 42 healthy controls (HC). A reduced microbial diversity was documented in the IBD patients compared with the HC. Moreover, we identified specific confounders and covariates that influenced the association between some bacterial taxa and disease extent (in UC patients) or behaviour (in CD patients) compared with the HC. In particular, a PERMANOVA stepwise regression identified the variables "age", "eat yogurt at least four days per week" and "eat dairy products at least 4 days per week" as covariates when comparing the HC and patients affected by ulcerative proctitis (E1), left-sided UC (distal UC) (E2) and extensive UC (pancolitis) (E3). Instead, the variables "age", "gender", "eat meat at least four days per week" and "eat bread at least 4 days per week" were considered as covariates when comparing the HC with the CD patients affected by non-stricturing, non-penetrating (B1), stricturing (B2) and penetrating (B3) diseases. Considering such variables, our analysis indicated that the UC extent differentially modulated the abundance of the Bifidobacteriaceae, Rikenellaceae, Christensenellaceae, Marinifilaceae, Desulfovibrionaceae, Lactobacillaceae, Streptococcaceae and Peptostreptococcaceae families, while the CD behaviour influenced the abundance of Christensenellaceae, Marinifilaceae, Rikenellaceae, Ruminococcaceae, Barnesiellaceae and Coriobacteriaceae families. In conclusion, our study indicated that some covariates and confounders related to an IBD-associated lifestyle and dietary habits influenced the intestinal taxa diversity and relative abundance in the CD and UC patients compared with the HC. Indeed, such variables should be identified and excluded from the analysis to characterize the bacterial families whose abundance is directly modulated by IBD status, as well as disease extent or behaviour.


Assuntos
Colite Ulcerativa/microbiologia , Doença de Crohn/microbiologia , Dieta , Disbiose/microbiologia , Microbioma Gastrointestinal , Estilo de Vida , Adulto , Fatores Etários , Idoso , Estudos de Casos e Controles , Laticínios , Exercício Físico , Fezes/microbiologia , Humanos , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Fatores Sexuais , Fumar , Iogurte , Adulto Jovem
17.
J Crohns Colitis ; 16(1): 122-132, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34232309

RESUMO

BACKGROUND AND AIMS: The inflammatory bowel disease [IBD]-associated immune response is marked by excessive production of a variety of inflammatory cytokines, which are supposed to sustain and amplify the pathological process. OTUD5 is a deubiquitinating enzyme, which regulates cytokine production by both innate and adaptive immune cells. Here, we investigated the expression and role of OTUD5 in IBD. METHODS: OTUD5 expression was evaluated in mucosal samples of patients with Crohn's disease [CD], patients with ulcerative colitis [UC], and controls, as well as in mice with trinitrobenzene-sulphonic acid [TNBS]-induced colitis by real-time polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence. Moreover, OTUD5 was assessed in lamina propria mononuclear cells [LPMC] stimulated with inflammatory cytokines. TNF-α, IL-6, and IL-10 were evaluated in LPMCs of IBD patients and in colitic mice transfected with a specific OTUD5 antisense oligonucleotide [AS]. RESULTS: OTUD5 protein, but not RNA, expression was increased in inflamed ileal and colonic mucosal samples of patients with CD and patients with UC as compared with controls. In IBD, OTUD5-expressing cells were abundant in both epithelial and lamina propria compartments, and non-CD3+, HLA-DR+ LPMC were one of the major sources of the protein. OTUD5 expression was enhanced by IFN-γ through a p38/MAPK-dependent mechanism, and the AS-induced knockdown of OTUD5 in LPMCs of IBD patients and colitic mice reduced TNF-α. CONCLUSIONS: Our data show that OTUD5 is overexpressed in both CD and UC and suggest the involvement of such a protein in the amplification of the aberrant cytokine response in IBD.


Assuntos
Citocinas/imunologia , Endopeptidases/imunologia , Doenças Inflamatórias Intestinais/imunologia , Proteases Específicas de Ubiquitina/imunologia , Animais , Biópsia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
18.
J Crohns Colitis ; 16(2): 301-311, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-34374415

RESUMO

BACKGROUND AND AIMS: Intestinal barrier dysfunction is a hallmark of inflammatory bowel diseases [IBD], but the mechanisms that lead to such a defect are not fully understood. This study was aimed at characterising the factors involved in the defective barrier function in IBD. METHODS: Transcriptome analysis was performed on colon samples taken from healthy controls [CTR] and IBD patients. Expression of GATA-binding factor 6 [GATA6], a transcription factor involved in intestinal epithelial cell differentiation, was evaluated in colon samples taken from CTR and IBD patients by real-time polymerase chain reaction [PCR] and immunohistochemistry. Intestinal sections of wild-type and Gata6del mice, which exhibit a conditional Gata6 deletion in intestinal epithelial cells and which are either left untreated or receive subcutaneous indomethacin or rectal trinitrobenzene sulphonic acid, were stained with haematoxylin and eosin. In parallel, some Gata6del mice received antibiotics to deplete intestinal flora. Mucosal inflammatory cell infiltration and cytokine production were evaluated by flow cytometry and real-time PCR, respectively, and tight junction proteins were examined by immunofluorescence. Intestinal barrier integrity was assessed by fluorescein isothiocyanate [FITC]-dextran assay. RESULTS: Multiple genes involved in cell commitment/proliferation and wound healing were differentially expressed in IBD compared with CTR. Among these, GATA6 was significantly decreased in the IBD epithelium compared with CTR. In mice, conditional deletion of GATA6 in the intestinal epithelium induced primarily epithelial damage, diminished zonula occludens-1 expression, and enhanced intestinal permeability, ultimately resulting in bacteria-driven local immune response and enhanced susceptibility to gut inflammation. CONCLUSIONS: Reduced expression of GATA6 promotes intestinal barrier dysfunction, thus amplifying intestinal inflammatory pathology.


Assuntos
Fator de Transcrição GATA6 , Doenças Inflamatórias Intestinais , Animais , Sulfato de Dextrana , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Humanos , Inflamação/patologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Camundongos , Junções Íntimas/metabolismo
19.
Cell Mol Gastroenterol Hepatol ; 11(2): 639-658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33091622

RESUMO

BACKGROUND & AIMS: The fragile X mental retardation protein (FMRP) affects multiple steps of the mRNA metabolism during brain development and in different neoplastic processes. However, the contribution of FMRP in colon carcinogenesis has not been investigated. METHODS: FMR1 mRNA transcript and FMRP protein expression were analyzed in human colon samples derived from patients with sporadic colorectal cancer (CRC) and healthy subjects. We used a well-established mouse model of sporadic CRC induced by azoxymethane to determine the possible role of FMRP in CRC. To address whether FMRP controls cancer cell survival, we analyzed cell death pathway in CRC human epithelial cell lines and in patient-derived colon cancer organoids in presence or absence of a specific FMR1 antisense oligonucleotide or siRNA. RESULTS: We document a significant increase of FMRP in human CRC relative to non-tumor tissues. Next, using an inducible mouse model of CRC, we observed a reduction of colonic tumor incidence and size in the Fmr1 knockout mice. The abrogation of FMRP induced spontaneous cell death in human CRC cell lines activating the necroptotic pathway. Indeed, specific immunoprecipitation experiments on human cell lines and CRC samples indicated that FMRP binds receptor-interacting protein kinase 1 (RIPK1) mRNA, suggesting that FMRP acts as a regulator of necroptosis pathway through the surveillance of RIPK1 mRNA metabolism. Treatment of human CRC cell lines and patient-derived colon cancer organoids with the FMR1 antisense resulted in up-regulation of RIPK1. CONCLUSIONS: Altogether, these data support a role for FMRP  in controlling RIPK1 expression and necroptotic activation in CRC.


Assuntos
Neoplasias Colorretais/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Recidiva Local de Neoplasia/epidemiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Animais , Azoximetano/administração & dosagem , Azoximetano/toxicidade , Carcinogênese/genética , Estudos de Casos e Controles , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Colo/patologia , Colo/cirurgia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/cirurgia , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Proteína do X Frágil de Retardo Mental/antagonistas & inibidores , Proteína do X Frágil de Retardo Mental/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Camundongos Knockout , Necroptose/genética , Recidiva Local de Neoplasia/genética , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Organoides , Prognóstico
20.
Cancers (Basel) ; 12(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260828

RESUMO

The stromal compartment of colorectal cancer (CRC) is marked by the presence of large numbers of fibroblasts, termed cancer-associated fibroblasts (CAFs), which promote CRC growth and progression through the synthesis of various molecules targeting the neoplastic cells. Interleukin (IL)-34, a cytokine over-produced by CRC cells, stimulates CRC cell growth. Since IL-34 also regulates the function of inflammatory fibroblasts, we hypothesized that it could regulate the tumor promoting function of colorectal CAFs. By immunostaining and real-time PCR, we initially showed that IL-34 was highly produced by CAFs and to lesser extent by normal fibroblasts isolated from non-tumoral colonic mucosa of CRC patients. CAFs and normal fibroblasts expressed the functional receptors of IL-34. IL-34 induced normal fibroblasts to express α-SMA, vimentin and fibroblast activation protein and enhanced fibroblast growth, thus generating a cellular phenotype resembling that of CAFs. Consistently, knockdown of IL-34 in CAFs with an antisense oligonucleotide (AS) decreased expression of such markers and inhibited cell proliferation. Co-culture of CRC cells with IL-34 AS-treated CAFs supernatants resulted in less cancer cell proliferation and migration. Among CAF-derived molecules known to promote CRC cell growth/migration, only netrin-1 and basic-fibroblast growth factor were induced by IL-34. Data suggest a role for IL-34 in the control of colorectal CAF function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...